
seismic-py: Reading seismic data with Python

Kurt Schwehr

Center for Coastal and Ocean Mapping, University of New Hampshire

Abstract. The field of seismic exploration of the Earth has changed
dramatically over the last half a century. The Society of Exploration
Geophysicists (SEG) has worked to create standards to store the vast
amounts of seismic data in a way that will be portable across computer
architectures. However, it has been impossible to predict the needs of the
immense range of seismic data acquisition systems. As a result, vendors have
had to bend the rules to accommodate the needs of new instruments and
experiment types. For low level access to seismic data, there is need for a
standard open source library to allow access to a wide range of vendor data
files that can handle all of the variations. A new seismic software package,
seismic-py, provides an infrastructure for creating and managing drivers for
each particular format. Drivers can be derived from one of the known formats
and altered to handle any slight variations. Alternatively drivers can be
developed from scratch for formats that are very different from any previously
defined format. Python has been the key to making driver development easy
and efficient to implement. The goal of seismic-py is to be the base system
that will power a wide range of experimentation with seismic data and at the
same time provide clear documentation for the historical record of seismic
data formats.

INTRODUCTION

Seismic data systems use acoustic pulses to send
sound waves through water and the solid earth to map
layers within the subsurface. They vary from simple
single source and single receiver systems to multiple
sources and long arrays of geophones or hydrophones.
The processing of the received sound waves requires a
range of data storage and signal analysis techniques.
Python can support both the data archival and pre-
cessing tasks.

In this paper, I will use the example of a single
source seismic instrument towed behind a ship (e.g. Fig-
ure 1a,b). The device (known as a tow-fish, or just a
fish) is a 2m long device that emits a pulse of sound
energy over a range of frequencies straight down using
piezoelectric transducers. The energy travels as waves
through the water and bottom material. As the sound
velocity of the medium changes, a small portion of the
energy is reflected back up towards the fish where it is
collected by the receivers and stored for later process-
ing. Each pulse of outgoing energy is referenced to as

a shot and the resulting returned data are collectively
called a trace. A GPS on-board the ship records the po-
sition and time of the ship for each shot. When traces
are combined and georeferenced, a ribbon view is cre-
ated that is call a seismic line (Figure 1c). The inset
in Figure 1c shows the seismic lines combined with the
bathymetry to give an overall picture of the ocean bot-
tom. The process of going from shots to a 3D model
with interpretation through to a publication can be ar-
duous, especially when there are terabytes data.

There are literally thousands of pieces of code around
the world for reading and writing seismic data both
in the commercial and academic world. Do we need
yet another one? The Society of Exploration Geophysi-
cists (SEG) has worked to provide a number of well
thought out standards for seismic data (e.g. SEGY Rev
0) [Barry et al., 1975]. The SEG has continued evalu-
ating the needs of the community and has released an
updated format that attempts to accommodate changes
in the industry (e.g. SEGY Rev 1) [Norris and Faich-
ney , 2002]. However, the reality is that no one software
package can read all of the variations on these standard

1

Schwehr: seismic-py, Python Papers 2008 2

0.5-6 kHz
Transducer

2-16 kHz
Transducer
High frequency
receiver
4 low frequency
receivers

b)a) c)

Wire out

GPS

Layback

Fish

Figure 1. a) Schematic of a ship towing a seismic subbottom profiler (fish). Base image courtesy Genevieve
Tauxe. b) Underside of an EdgeTech Chirp fish showing the transducers that produce the acoustic shot and the
sensors that receive the reflected energy, which are stored as a trace. Image courtesy Laurent Beguery. c) Traces
are shown together as a curtain to show a seismic line and are often combined with multibeam bathymetry as
visualized by Fledermaus in the inset. Data courtesy Neal Driscoll and Pat Iampietro.

formats and there is no central repository document-
ing how these formats differ from the SEGY standards.
Many seismic processing packages come with tools that
allow binary level inspection of data files to attempt
to ascertain how a particular SEGY file is structured.
Users currently need a range of tools in their arsenal to
extract critical data from recorded data streams.

seismic-py is a package designed to alleviate the prob-
lems of changing data file formats in the seismic indus-
try. It provides a Python Application Programming
Interface (API) for seismic data that relies on a set of
drivers that specify and document the actual layout of
a particular file format. seismic-py provides this critical
functionality in a library released under the GNU Gen-
eral Public License (GPL) [Stallman, 1984–], an Open
Source Initiative (OSI) [Raymond , 1998–] approved li-
cense. This means that students and professionals alike
have the right to modify and improve the seismic-py
package. The source code is available for download here:

http://schwehr.org/software/seismic-py/

SEGY FILE LAYOUT

Before proceeding into the details of the software sys-
tem, it is important to have an understanding of the lay-
out of SEGY Rev 1 data. The format is a Fortran style
series of binary data records preceded by a header. The
overall layout of SEGY files breaks the content into two
major sections. First is a header group starting with
a 3200 byte text block (either ASCII or EBCDIC)
that is either free form or grouped into 40 predefined
80 character records. Following the text block is a well
defined 400 byte binary header region. After this are

zero or more Extended Textual File Headers that do
not have their format defined in the standard. The rest
of the file consists of seismic trace records. These trace
records are not required to all be the same size, but
they are required to have a 240 byte binary header at
the beginning of each trace. Vendors and people pro-
cessing seismic data frequently create their own format
by changing the meaning of these binary fields.

DESIGN

The choice of computer language is the most pivotal
design element of a software project. This choice alters
which tasks will be hard or easy. For most seismic pack-
ages, Fortran and/or C/C++ are the usual choices for
implementation. Fortran is the most common language
for the geophysical community, but is rather rigid. The
C/C++ family of languages provides extreme flexibil-
ity, dynamically loadable modules, object oriented de-
sign and much more, but at a cost of complexity and fre-
quency of bugs. Python appears to be an excellent com-
promise between the two groups of languages. Python
comes with additional functionality not easily available
with either of the other alternatives. Students are able
to quickly pickup skills in Python faster than Fortran
or C. Python’s additional functionality simplified the
initial design and implementation of seismic-py.

With the wide range of vendor implementations of
SEGY writers, it is critical that SEGY readers be able
to easily handle a large number of drivers and allow
driver writers to quickly produce the needed changes.
With C/C++, this task is possible with dynamically
loaded, shared libraries or by parsing specification files,

http://schwehr.org/software/seismic-py/

Schwehr: seismic-py, Python Papers 2008 3

def createDriverName(drvStr):
’’’Make Python filename to load:
xstar -> segy_drv_xstar
drv_xstar -> segy_drv_xstar
segy_drv_xstar.py -> segy_drv_xstar
’’’
if -1 != drvStr.find(’.py’):

drvStr = drvStr[:-3]
if -1 == drvStr.find(’drv_’):

drvStr = ’segy_drv_’+drvStr
if -1 == drvStr.find(’segy_’):

drvStr = ’segy_’+drvStr
return drvStr

def getDriverModule(drvStr=’segy_drv_rev1’):
drivername = createDriverName(drvStr)
file, pathname, description =

imp.find_module(drivername)
drv = imp.load_module(drivername,file,

pathname,description)
return drv

Figure 2. The getDriverModule function wraps the
Python module loaded. By wrapping the standard
Python module loader with the createDriverName
function, seismic-py is able to let the user use
shorthand driver names such as “rev1” instead of
“segy drv rev1.py”.

but is prone to errors and difficulties with dynamic link-
ers. Python provides this functionality with the imp
module [Python Software Foundation, 2008b] allowing
device loading to be coded in python. The imp mod-
ule provides the components required to create a cus-
tom import function in python. seismic-py provides a
getDriverModule function that wraps the imp module
allowing the user to specify the driver name in any one
of four forms (Figure 2). Python loads a driver module
from the users PYTHONPATH and returns the drv object.
All Python code is then able to access the driver data
just as it would any other Python module.

A non object-oriented design works just as well and
should be more approachable to scientists who may
not be familiar with object-oriented design. For most
projects of this nature, the obvious choice for a design
would be to create a parent class and derive drivers from
the parent class or from sibling drivers. With the his-
tory of the SEGY formats, a straight inheritance tree
would probably be rather difficult. It is expected that as
the pool of drivers increases, new drivers will pull pieces

1. textFileHeaderEntries (Optional)
2. binaryHeaderEntries
3. extTextFileHeaderEntries (Optional)
4. traceHeader
5. fileHeaderTables
6. traceHeaderTables
7. fileHeaderShortList
8. traceHeaderShortList

Figure 3. Lookup tables (dictionaries) for a SEGY file
driver. Each table specifies all of the valid field names
and byte locations for each field. All of these tables are
required except the text and extended text file header
entries.

from a wide variety of existing drivers. A true object-
oriented design would potentially create a complicated
path of multiple inheritances. The driver approach here
appears to simplify this problem and allows drivers to
reuse pieces from where ever they exist without code
duplications. If one were to try to draw the histori-
cal relationships of SEGY format variations, it might
look something like the attempts to graph Unix system
lineages: very complicated and never truly accurate.

Driver Specification File

Each specification driver is simply a Python file with
a set of required dictionaries (lookup tables; Figure 3).
These lookup tables have a variety of tasks ranging
from acting as pointers into binary data to allowing
decoding of data elements. Each section dictionary
contains byte offset ranges for each data field. The
“segy drv rev1.py” provides the reference driver.

Items 1-4 in Figure 3 provide the core lookup tables.
These tables specify the location for each field in the
headers. The binaryHeaderEntries and traceHeader
tables together dictate how to decode the data in the
traces. The majority of these fields are integers. For
those integers that are enumerated values, it is impor-
tant to be able to create human readable text represen-
tations of values. Take the dataField dictionary as an
example. A ’5’ means that the data will be a ”4-byte
IEEE floating-point.” The lookup tables provide byte
offsets in items 5 and 6 for each field. Figure 4 shows a
code example showing how to use the tables contained
in a driver.

The short lists (items 7 and 8) are used for programs
that wish to show a smaller list of items considered to
be the most critical. The short list provides a less over-
whelming view of the trace header and are the items

Schwehr: seismic-py, Python Papers 2008 4

>>> import segy
>>> s = segy.Segy(’file.sgy’)
>>> print s.drv.binaryHeaderEntries

[’SampleFormat’]
[3225, 3226, ’Data sample format code’]

>>> s.header.getBinEntry(’SampleFormat’)
1

>>> print s.drv.fileHeaderTables
[’SampleFormat’][1]

4-byte IBM floating point

Figure 4. The Python command line is a quick way to
explore a SEGY file. Once a file is loaded, it is possi-
ble to query for the raw values as with getBinEntry or
get the English translation by using one of the lookup
tables.

from segy_drv_rev1 import dataFormats
from segy_drv_rev1 import dataFormatStruct
from segy_drv_rev1 import traceSortingCodes
from segy_drv_rev1 import sweepTypeCodes

Figure 5. Reuse of common driver functionality is en-
couraged. This can also be used to show the heritage of
file format. For example, if a driver is essentially SEGY
Rev 1 with a few modifications, this will immediately
be clear to anyone who reads the driver file.

that the driver author decided are the most important
for users to examine. For example, the short list for
a trace header might consist of only the shot number
(Shotpoint), the geographic location of the GPS (X,
Y), and the delay from the shot firing to the time the
receivers start recording (Delay). The standard trace
header has an overwhelming 90 items, whereas the short
list might have just 4 or 5 entries.

Deriving Variant Specifications

Once a basic driver has been created for a family of
SEGY formats, it is easy to create derivative drivers
that only modify small portions of an existing driver.
The segy drv xstar.py file provides an example of a
derivative driver. The SIO EdgeTech Chirp XStar for-
mat is similar to SEGY Rev 1. All of the components
that remain the same are directly imported (Figure 5).

Python tries to keep only references to objects when
they are used elsewhere within a Python program. For
items that need to be changed, it is important to make
a completely new and separate local copy of the data.
This is done with what Python calls a deepcopy [Python

binaryHeaderEntries = copy.deepcopy (
segy_drv_rev1.binaryHeaderEntries
)

del binaryHeaderEntries[’JobId’]
del binaryHeaderEntries[’ReelNo’]
del binaryHeaderEntries[’TracesPerEnsemble’]

Figure 6. It is critical to use deepcopy when deriving
tables from drivers. This prevents the original driver
from being corrupted when altering of deleting entries
in a new driver.

Software Foundation, 2008a]. Figure 6 is an example
with the binaryHeaderEntries. The XStar format does
not fill in a number of fields. Missing entries are re-
moved from the local copy after the SEGY Rev 1 entries
are deep copied.

Performance

Software performance is critical to seismic processing
applications. Seismic instruments are capable of rapidly
generating enormous quantities of data. If the code is
not able to cope with this volume, users will quickly be-
come frustrated. seismic-py takes the approach of using
the mmap system call through the mmap Python module
[Python Software Foundation, 2008c]. This call allows
the operating system (OS) to page data into memory on
demand via the paging system. Since these pages are
marked as read only, the OS can dump pages quickly
as memory pressure increases during processing runs.
Locations of each name are stored in a Python dictio-
nary (basically hash tables). With the small size of
these dictionaries, the lookups proceed quickly. mmap
brings in raw binary data that cannot be direct read
with Python. However, Python provides the struct
module [Python Software Foundation, 2008d] that can
convert binary data to Python objects given a conver-
sion string. The struct module can convert a range
of integer types along with IEEE 32- and 64-bit float-
ing point numbers. Much older seismic data is in IBM
floating point format that is not supported by struct,
therefore seismic-py can not yet read those seismic data
files.

If the speed of the pure Python is not fast enough, it
is possible to replace data parsing code with optimized
C or C++ code. Originally, this was only possible with
the Python/C programming API [van Rosum, 2008],
but there now exist a wide range of tools for wrap-
ping C++ for using python such as SWIG [Beazley and
Lomdhal , 1997] or Boost.Python [Abrahams, 2002–], or

Schwehr: seismic-py, Python Papers 2008 5

-20000

-15000

-10000

-5000

 0

 5000

 10000

 15000

 20000

 750 800 850 900 950 1000 1050 1100

A
m

pl
itu

de

A/D sample

Seismic Trace

'file.sgy-00002.dat'

Figure 7. Gnuplot output from plotting the ASCII
trace values written to disk by segydump. Plotted with
“plot ’file.sgy-00002.dat’ with linespoints”.

alternatively using C inline within Python source code
[Mardal and Westlie, 2007-; Simpson, 2001].

SAMPLE APPLICATIONS

To make it easier to get started with seismic-py, the
package comes with many sample applications. I will
discuss 3 applications to give a flavor of the possibili-
ties. Segydump provides a quick look capability similar
standard hex viewers, but with an understanding of the
header field names. Seqysql loads the trace headers
into a simple SQL database. Segysqlgmt combines the
trace locations with a program to draw maps.

Segydump

Segydump provides internal listings and trace data
dumps for SEGY data files. This is an excellent starting
example as it exercises just about all of the functionality
in the driver but hides most of it behind the Segy class.
The most challenging portion of Segydump is handling
all of the command line options such as being able to in-
clude the filename in front of each line of text. Figure 8
is a stripped down version of the dumping code.

By specifying the driver with the Segy class, all of
the quirks of the XStar format are irrelevant at this
level of the interface. The code starts by opening a
SEGY data file with the specified driver on Line 3.
Line 4 prints out the number of traces in the file. The
printBinaryHeaders call in line 5 prints out all of the
header entries. The user can request that traces be
dumped out to disk, which is done in lines 6-8. Line 9
finishes by printing out the header information for each
trace. Additional code in segydump (not shown here)
handles looping over each of the provided files, selecting

1 traceNum = 123
2 filename = ’LaJolla-line101.xstar’
3 s = Segy(filename, drivername=’xstar’)
4 print ’traces = %s’ % s.getNumberOfTraces()
5 s.header.printBinaryHeaders()
6 s.writeTraceToFile(’%s-%05d.dat’ \
7 % (filename,traceNum),
8 traceNum)
9 s.getTraceHdr(traceNum).printHeader()

Figure 8. This code snippet writes the data from a
trace out to an ASCII text data file. This data file is
suitable to loading into Octave or plotting with Gnu-
plot.

short or long output, and providing additional informa-
tion. It is up to the user to use a tool like grep to pull
out specific header fields. Think of segydump as the
equivalent to the Unix ls or DOS dir commands.

The ability to write out individual traces should
make a wide range of studies more convenient. Most
processing environments and languages can read in
ASCII data that is in (sample number,value) pairs. The
simplest case is visual inspection of individual traces as
shown in Figure 7, which shows the gnuplot results
from running “segydump -w -t 2 file.sgy” followed
by gnuplot. This idea can be extended to programs
such as MATLAB and IDL/ENVI where additional signal
processing is traditionally can be performed.

Segysql

One of the most common tasks of working with seis-
mic data is trying to manage all of the metadata for
SEGY files. Python provides a rich set of modules that
simplify many of these tasks. Users often want to know
which lines cross through a region or the shot closest
to a feature, core, or station. The strategy most fre-
quently used in the academic world is to create a wide
range of text columns managed with awk, sed, and Perl
scripts. SQL provides an easier way to query large data
sets. The problem is that there has been no easy way
to import the header data for files and traces into an
SQL database. Segysql provides a complete example
of database importing using the SQLite [Wyrick and
Hipp, 2000–] database. SQLite was solely for its ease
of use. There is no need to setup a database server.
As of version 2.5, Python has a SQLite database inter-
face called sqlite3, that simply uses a single file as the
database repository. Older versions of Python can use
pysqlite [Owens and Haering , 2001–]. Switching to any

Schwehr: seismic-py, Python Papers 2008 6

01 import segy
02 import sqlite3
03 cx = sqlite3.connect(’segy.db3’)
04 cu = cx.cursor()
05 cu.execute(segy.sqlCreateFileTable(’xstar’))
06 cu.execute(segy.sqlCreateTraceTable(’xstar’))
07 cx.commit()
08 xstar = segy.Segy(filename,’xstar’)
09 cu.execute(xstar.header.sqlInsert(filename))
10 cx.commit()
11 cu.execute(’SELECT fileKey FROM segyFile WHERE filename=:1;’,(filename,))
12 fileKey = cu.fetchone()[’fileKey’]
13 for i in range(1,xstar.getNumberOfTraces()+1):
14 cu.execute(xstar.getTraceHdr(i).sqlInsert(traceNumber=i,fileKey=fileKey))
15 cx.commit()

Figure 9. seismic-py provides helper mechanisms to simplify SQL database creation that can easily be combined
with SQLite.

other database interface requires changing only a few
lines. The seismic-py Python API provides methods
that return the necessary SQL string for table creation
and row insertion. Just pass these string into a new
database interface.

Figure 9 demonstrates a stripped down version of
code to create and fill an SQL database from a set of
SEGY files. Lines 3-7 connect to a new database file and
create the database tables. Once, the database has been
created, the first task is to add a file to the database
(Line 09). To insert all of the trace headers into the
headers, first we have to get (with an SQL SELECT) the
reference key created by the database for the file (Line
9-10). Finally, each trace is added in a loop over all of
the traces (Line 13-14). The commit calls are part of the
SQL database interface transaction handling. Nothing
is actually added to the database until the commit call.

Segysqlgmt

Once header information is in a database, it becomes
much easier to create mini-applications that add to the
seismic processor’s tool chest. Marine scientists typi-
cally use GMT [Wessel and Smith, 2006] and MBSys-
tem [Caress and Chayes, 2001–] to make maps of areas
that can incorporate other critical data. segysqlgmt, a
program to display the tracks of seismic lines on a map,
illustrates this concept. mbm grdplot, a script with in
MB System, reads a GMT grd and then outputs a de-
fault plotting script using GMT commands, providing
a simple basemap. For example, with a Santa Barbara
Basin, CA mutlibeam data set [Hatcher and Maher ,

1999], the command is “mbm grdplot -Igmt.grd.” This
is much easier that starting off writing your own GMT
script. Segysqlgmt can then provide text format data
files for the ship tracks and shot counts at intervals in a
format suitable for GMT’s psxy and pstext along with
the shell script lines to add to the mbm grdplot orig-
inal script. segysqlgmt creates quick look shot plots
for surveys on top of that base map that can be seen in
Figure 10.

FUTURE DIRECTIONS

There is still much work to be done on seismic-
py. This paper describes only the initial work done
by one developer. seismic-py takes a different approach
to seismic data processing compated to other academic
packages such as sioseis [Henkart , 1975]), Seismic Unix
[Stockwell , 1997], or pltsegy [Harding , 2005] by provid-
ing stand alone base level drivers. An open source con-
tribution to the seismic community will hopefully spur
more research into seismic data processing, visualiza-
tion, and interpretation that will give the geoscience
community new views into our rocky planets.

To date, seismic-py only implements the SEGY Rev
1 and the EdgeTech XStar format, but it holds promise
for providing a vast range of data formats. Critical
missing features include full handling of ASCII/EBCDIC
headers, extended text headers, IBM floating point
data, definition of non-integer header values, and many
more vendors’ formats. All of these are not hard to
provide and are just a matter of additional developer

Schwehr: seismic-py, Python Papers 2008 7

Ship Track and Shotpoints for BPSIO 2004

239˚35’

239˚35’

239˚45’

239˚45’

239˚55’

239˚55’

240˚05’

240˚05’

240˚15’

240˚15’

240˚25’

240˚25’

34˚00’ 34˚00’

34˚10’ 34˚10’

34˚20’ 34˚20’

34˚30’ 34˚30’

Figure 10. Ship tracks and shot points for a Santa Barbara Basin chirp cruise in 2004. The map was created with
a combination of MB-System, GMT, and seismic-py. By drawing cores, ship tracks, and shot numbers, analysts
can quickly find the relevant data.

time. Python has proved to be an ideal language for
handling formats like this that are Fortran style binary
data records. The built-in dictionary and list data types
make the driver files appear very close to the original
text specification documents.

The segy class interface needs a few additions. The
most critical to making seismic-py more ”Pythonic” is
to add an iterator interface, such that a for loop on a
segy object will loop over the traces. Additionally, the
initial database interface only supports traditional SQL
calls. Future versions need to add support for spatial
databases such as PostGIS [Refractions Research, 2008]
and [Furieri , 2008]

The initial work on seismic-py used Python dictio-
naries to define the SEGY file format and for the files
variances produced by each instrument. This is effective
for initial prototypes, but for larger impact on the com-
munity, future projects should use eXtensible Markup
Language (XML) configuration files. XML allows soft-
ware implementers to choose their language of prefer-
ence (assuming that it has an XML reading library) or
a compiler could be generated that emits source code
for any particular programming language. A compiled
version (resulting in Python code) could be made faster
without the current run-time table lookups.

CONCLUSION

seismic-py provides a reference implementation of an
interface to the wide variety of seismic data that end
users encounter in processing seismic data. seismic-
py will provide the basis for the rapid development of
new tools for inspecting and processing seismic data.
seismic-py removes the restriction of using one type of
seismic data at a time. Users can open many differ-
ent seismic streams at the same time with each stream
utilizing a different driver matching each data file type.

Today, many students in geophysics and geology
learn programming on non-geoscience type problems.
Tools like seismic-py will allow beginning students learn
the computer languages such as Python while working
with data sets that are exciting and cutting edge. Why
not have students start by accessing and viewing seis-
mic data when they are learning to program if they are
studying geophysics? The hope is to turn seismic-py
into one component of an introduction to scientific com-
puting class. The class can use packages such as SciPy
[Jones et al., 2001–], ScientificPython[Hinsen, 1999–],
the pygsl interface to Gnu Scientific Library [Gaedke
and Schnizer , 2001–]), and the Python Imaging Library
[PythonWare, 2006] to dive right into processing real
data while learning data structures and algorithms. The
various tasks can then be combined to create figures

Schwehr: seismic-py, Python Papers 2008 8

suitable for scientific publications (e.g. Figure 1c).
Perhaps the most important side effect of seismic-

py is the beginning of a library that documents seis-
mic formats. There is a vast wealth of commercial and
academic seismic data already collected to date. By
keeping these older data sets readable, new experiments
studying change in earth structures become more man-
ageable. Huge amounts of money have already been
spent collecting seismic data and it is important to sim-
plify access to the valuable resource.

Acknowledgments

I would like to thank the reviewers and many other
people who read drafts of this paper for their valuable
input. Lisa Tauxe and Neal Driscoll provided much
encouragement. NSF and BP provided funding the data
collection that led to this software project.

References

Abrahams, D., Boost.Python, http: // www. boost.

org/ doc/ libs/ release/ libs/ python/ doc/ ,
2002–.

Barry, K. M., D. A. Cavers, and C. W. Kneale, Report
on recommended standards for digital tape formats,
Geophysics, 40 , 344–352, 1975.

Beazley, D. M., and P. S. Lomdhal, Feeding a
Large–scale Physics Application to Python, Inter-
national Python Conference, 6 , http://www.swig.
org/papers/Py97/beazley.html, 1997.

Caress, D., and D. Chayes, MB-System Ver-
sion 5, Open source software distributed from
the MBARI and L-DEO web sites, 12 beta
releases, http: // www. ldeo. columbia. edu/ res/

pi/ MB-System/ MB-System. intro. html , 2001–.
Furieri, A., SpatiaLite - VirtualShape, http: // www.

gaia-gis. it/ spatialite-2. 0/ index. html ,
2008.

Gaedke, A., and P. Schnizer, PyGSL: Python inter-
face for GNU Scientific Library, http: // pygsl.

sourceforge. net/ , 2001–.
Harding, A., pltsegy, 2005.
Hatcher, G., and N. Maher, MBARI Santa Barbara

Basin Multibeam Survey, http: // www. mbari.

org/ data/ mapping/ SBBasin/ default. htm , 1999.
Henkart, P., Sioseis, http: // sioseis. ucsd. edu/ ,

1975.
Hinsen, K., ScientificPython, http: // starship.

python. net/∼hinsen/ ScientificPython/ , 1999–
.

Jones, E., T. Oliphant, P. Peterson, et al., SciPy:
Open source scientific tools for Python, http: //

www. scipy. org/ , 2001–.
Mardal, K., and M. Westlie, Instant, http: // www.

fenics. org/ wiki/ Instant , 2007-.
Norris, M. W., and A. K. Faichney, SEG Y

rev 1 Data Exchange format, http: // seg. org/

publications/ tech-stand/ , 2002.
Owens, M., and G. Haering, pysqlite - A DB API v2.0

compatible interface to SQLite, http: // initd.

org/ tracker/ pysqlite , 2001–.
Python Software Foundation, copy – Shallow and deep

copy operations, http: // docs. python. org/ lib/
module-copy. html , 2008a.

Python Software Foundation, imp – Access the im-
port internals, http: // docs. python. org/ lib/

module-imp. html , 2008b.
Python Software Foundation, mmap – Memory-

mapped file support, http: // docs. python. org/

lib/ module-mmap. html , 2008c.
Python Software Foundation, struct – Interpret strings

as packed binary data, http: // docs. python. org/
lib/ module-struct. html , 2008d.

PythonWare, Python Imaging Library (PIL), http: //
www. pythonware. com/ products/ pil/ , 2006.

Raymond, E. S., The Open Source Initiative, http:

// www. opensource. org/ , 1998–.
Refractions Research, PostGIS, http: // postgis.

refractions. net/ , 2008.
Simpson, K., PyInline, http: // www. fenics. org/

wiki/ Instant , 2001.
Stallman, R., The GNU General Public License, http:

// www. gnu. org/ licenses/ licenses. html ,
1984–.

Stockwell, J. W., Free Software in Education: A case
study of CWP/SU: Seismic Un*x, The Leading Edge,
1997.

van Rosum, G., Python/C API Reference, http: //

docs. python. org/ api/ api. html , 2008.
Wessel, P., and W. H. F. Smith, Generic Mapping Tools,

http: // gmt. soest. hawaii. edu/ , 2006.
Wyrick, G., and R. Hipp, SQLite, http: // www.

sqlite. org/ , 2000–.

K. Schwehr, Center for Coastal and Ocean Map-
ping, University of New Hampshire, Chase Ocean
Engineering 24 Colovos Rd, Durham, NH 03824,
schwehr@ccom.unh.edu, http://schwehr.org

http://www.boost.org/doc/libs/release/libs/python/doc/
http://www.boost.org/doc/libs/release/libs/python/doc/
http://www.swig.org/papers/Py97/beazley.html
http://www.swig.org/papers/Py97/beazley.html
http://www.ldeo.columbia.edu/res/pi/MB-System/MB-System.intro.html
http://www.ldeo.columbia.edu/res/pi/MB-System/MB-System.intro.html
http://www.gaia-gis.it/spatialite-2.0/index.html
http://www.gaia-gis.it/spatialite-2.0/index.html
http://pygsl.sourceforge.net/
http://pygsl.sourceforge.net/
http://www.mbari.org/data/mapping/SBBasin/default.htm
http://www.mbari.org/data/mapping/SBBasin/default.htm
http://sioseis.ucsd.edu/
http://starship.python.net/~hinsen/ScientificPython/
http://starship.python.net/~hinsen/ScientificPython/
http://www.scipy.org/
http://www.scipy.org/
http://www.fenics.org/wiki/Instant
http://www.fenics.org/wiki/Instant
http://seg.org/publications/tech-stand/
http://seg.org/publications/tech-stand/
http://initd.org/tracker/pysqlite
http://initd.org/tracker/pysqlite
http://docs.python.org/lib/module-copy.html
http://docs.python.org/lib/module-copy.html
http://docs.python.org/lib/module-imp.html
http://docs.python.org/lib/module-imp.html
http://docs.python.org/lib/module-mmap.html
http://docs.python.org/lib/module-mmap.html
http://docs.python.org/lib/module-struct.html
http://docs.python.org/lib/module-struct.html
http://www.pythonware.com/products/pil/
http://www.pythonware.com/products/pil/
http://www.opensource.org/
http://www.opensource.org/
http://postgis.refractions.net/
http://postgis.refractions.net/
http://www.fenics.org/wiki/Instant
http://www.fenics.org/wiki/Instant
http://www.gnu.org/licenses/licenses.html
http://www.gnu.org/licenses/licenses.html
http://docs.python.org/api/api.html
http://docs.python.org/api/api.html
http://gmt.soest.hawaii.edu/
http://www.sqlite.org/
http://www.sqlite.org/
http://schwehr.org

	INTRODUCTION
	SEGY FILE LAYOUT
	DESIGN
	Driver Specification File
	Deriving Variant Specifications
	Performance

	SAMPLE APPLICATIONS
	Segydump
	Segysql
	Segysqlgmt

	FUTURE DIRECTIONS
	CONCLUSION
	Acknowledgments

