

Mapping Mars Using Virtual Reality: The Pathfinder Experience

E. Zbinden,

C. Stoker, T. Blackmon, K. Schwehr, P. Henning, C. Neveu, B. Kanefsky.

Intelligent Mechanisms Group, NASA Ames Research Center, Moffett Field, CA, USA CAELUM Research Corporation - Recom Technologies

zbinden@artemis.arc.nasa.gov

Photo-Realistic Terrain Modeling

Objectives

1. Automatically generate photo-realistic terrain models at downlink rate and with low latency

2. Validate the use of virtual reality interfaces for science analysis and day to day mission planning

- Remote Processing of the Data at NASA Ames (limited space at SFOF)
- Turn around time under 30 minutes
- Render the models at frame rate allowing real time user interaction

Clients

- Pathfinder Scientists
- Mission controllers and rover operators
- Low Resolution VRML Models Available to the General Public via the Internet
- Public Outreach

The Stereo Pipeline

Ames Research Center

Intelligent Mechanisms Group Preprocessing Step

Intelligent Mechanisms Group Correlation

Research Center

Correlation and Disparity Map

Correlation

- Texture-based correlation
- Sum-of-Absolute-Differences correlation algorithm
- Correlation and cross-correlation to remove wrong matches

Filtering

- Subpixel approximation
- Outliers removal
- Adaptative gap filling
- Smoothing
- Lens abberation correction

Texture Overlay

Calibration of the Terrain Models

- Survey of 150 rock and ground feature positions in the Mars Garden at the University Of Arizona.
- Imaging and removal of the markers.
- Acquisition of the stereo datasets.
- Generation of the terrain models.
- Comparison between survey data and terrain models (51 positions compared)

Calibration and Accuracy: Results

On a sample of 51 points ranging between 2 and 10 meters from the camera:

33% are within 1% of their surveyed position 89% are within 2% of their surveyed position 98% are within 5% of their surveyed position

Distance From Camera [m]	Average Error in Position
2-3	1.3%
3-4	1.7%
4-5	1.6%
5-6	2.6%
6-7	2.0%
7-8	3.2%
8-9	1.4%
9-10	3.2%

Factors affecting the Model accuracy

Terrain Related

- Nature and geometry of the terrain.
- Distance from the camera.

Data Related

- Pointing error of the camera
- Image scale
- Image quality and camera parameters characterization

Processing Related

- Correlation algorithm (pixel artifacts and kernel size)
- Meshing algorithm

VR Interface: Marsmap

MarsMap – Intelligent Mechanisms Group, NASA Ames Research Center

File Map View Measure Preferences Help

Ames Research Center

a 🔽

Marsmap Utilization for MPF

Science Analysis

- Rock measurements
- Direction of wind streaks
- Topographical ridges and flow channels

Mission Operation and Planning

- Rover ramp deployment
- IMP pointing coordinates
- Long range Sojourner path planning

Data Archiving

- End of Day Rover positions
- Sojourner science experiments
- Rock locations and sizes

Outreach

- JPL-SFOF / NASA Ames demos and tours
- Virtual Mars on the World Wide Web (VRML)

Intelligent Mechanisms Group Measurements

— MarsMap – Intelligent Mechanisms Group, NASA Ames Research Center • | File Map View Measure Preferences Help Point 1 (Mars (x,y,z)

Ames Research Center

Intelligent Mechanisms Group Slope and Heading Angles

Intelligent Mechanisms Group Image Billboards

MarsMap – Intelligent Mechanisms Group, NASA Ames Research Center

File Map View Measure Preferences Help

•

Intelligent Mechanisms Group Data Archiving

MarsMap – Intelligent Mechanisms Group, NASA Ames Research Center

File Map View Measure Preferences Help

Center

a 🔽

Intelligent Mechanisms Group Conclusion and Future Work

Conclusion

"IMG operational experience in Mars Pathfinder demonstrated that virtual reality interfaces displaying photo-realistic terrains were of tremendous value to scientists and rover operators"

- Allow to clearly visualize all relevant information
- Facilitate rapid interpretation and decision making

Technologies

- Improve correlator
- Mesh optimization and levels of details
- Merging terrain models taken from multiple vantage points
- Development of science and visualization tools
- Development of simulation and archiving tools

Ongoing and Future Projects

- Pioneer (mapping Chernobyl unit 4)
- Mars 98
- Mars 01

