Worksheet 3: ANOVA

You will use one of the built-in R data sets called crabs in the MASS package
("Modern Applied Statistics with S" by Venables & Ripley).

library(MASS)

names (crabs)
dim(crabs)
crabs[1:10,]
sapply(crabs,class)
attach(crabs)

All set? There are two categorical variables, sex (gender) and sp (species). Let's
use a function called table () to see how many samples are in each of the
possible sub-groups:

table(sp,sex)

This is a well-balanced factorial design, with the same number of samples within
every possible combination of the two factors.

We want to investigate the influence of these two independent, categorical
variables on one or more of the response variables (i.e., FL, RW, CL, CW, BD). To
find out what these variables actually are, type help(crabs).

So, there are two ways to look at an analysis like this. First, as scientists, we
might just want to know whether gender and species are controlling factors on
crab morphology. Second, more practically, we might want to have a statistical
model that will allow us to estimate the size, length, weight, etc. of crabs, just by
knowing the gender and/or species, without having to measure them (let's
assume that the former is much easier and cheaper). ANOVA will allow us to do
both of those things.

The R function that 'fits' an ANOVA model is called aov (). There is an analogous

function for linear regression called 1m( ) that we saw briefly and will spend some

time using in the coming weeks.

But first, let's check out the response variables (measurements).
plot(data.frame(BD,CL,CW,FL,RW))

Note that this is exactly identical to the following expression:

pairs(cbind(BD,CL,CW,FL,RW))

Which is not unusual in R, as we have seen. Anyway, it looks like all the
measurements are highly correlated with one another, so it doesn't matter too



much which one we pick to do this exercise.

By the way, | mentioned the cor () function in class. While we're looking at
several columns of continuous data, let's just evaluate the correlation matrix.

cor (cbind(BD,CL,CW,FL,RW))

This tells us the correlation coefficient for all the pairs of variables, and as we saw
from the graph, they are all close to one, so they should all behave similarly.

Let's pick the first one, BD (‘body depth') as our response variable of interest.

plot(sp, BD)
plot(sex, BD)

What do you think? Let's look at the values of the means by group using
tapply().

tapply(BD, sex, mean)
tapply(BD, sp, mean)
tapply(BD, list(sex,sp), mean)

And, don't forget to check the 'grand mean'.
mean(BD)

OK. So, in ANOVA, the predictive 'model' is just a mean value, the mean of the
samples of a group. So, given a new observation of a sample belonging to a
certain group (or groups), we estimate the response variable to be the mean of
the samples in that group (or groups). The trick is deciding whether belonging to
a group matters, i.e., if there is a significant relationship between the groups and
the response.

Specifically, for example if neither gender nor species seems to have an effect on
body depth of crabs, then you would just use the overall (‘grand’) mean as the
model, i.e., every crab is the same, plus/minus uncertainty. Alternatively, if those
things do matter, then we use their group means, and the uncertainty will be
smaller.

Let's estimate the models, starting with the one that includes both variables and
interaction.

m2i = aov(BD
interaction

sex*sp) # two-way ANOVA with

m2n = aov(BD ~ sext+sp) # two-way ANOVA no interaction
mlg = aov(BD ~ sex) # one-way ANOVA on gender
mls = aov(BD ~ sp) # one-way ANOVA on species



There's no particular reason to do these all at once, except that we know we will
want to eventually choose the model that is "best", according to a number of
constraints: (1) we prefer models that have lower error; but (2) the lower error,
often due to more complexity, should be statistically significant; and (3) the
underlying assumptions should be satisfied in order to interpret the model's
significance.

Let's start with the one-way model m1s. This model assumes that species is the
important factor, and that if you know species, then your estimate of BD will be
the species mean. The generic R function for extracting model coefficients is
called coef (). | think we saw this with a regression in first lab.

Is the m1s model valid, i.e., are the differences in the means of groups B and O
statistically significant?

summary (mls)

Three stars. So, we "reject the null hypothesis that the groups in sp all have the
same mean".

Now, compare coef (mls) with tapply(BD, sp, mean).See what's going
on? Repeat this with model m1g.

The case of ANOVA with two variables, each with two levels, is best visualized
using a 2x2 grid. We'll do this together in lab, but if you get there first, compare
coef (m2n) with tapply(BD, list(sex,sp), mean).

So we see what the ANOVA model is, and what is does. How do we pick the right
one? The R function that helps us to do this is called, somewhat confusingly,
anova().

Let's use anova () to see if the difference in error is significant between the top
two models.

anova(m2i, m2n)

Yes, slightly. This is evidence that we should keep the interaction term. | like to
test all the models pairwise, and discard the ones that do not significantly reduce
the error. Try all the combinations and make sure you understand what's
happening before moving on.

So, you should have selected the full model m21i as the "best". Now we want to
validate the assumptions. Note that we could have looked at assumptions first,
before model selection. Going in this order, we want to check out the
assumptions of m21i. If it looks bad, then we probably will want to revisit to the
other models.



plot (m2i)
What was that? These plots help us visualize the properties of the residuals.

What we are looking for would be an obvious variation across groups in the
mean or variance of the errors.

Finally, use shapiro.test() and bartlett.test () to check the residuals.

So, what's the answer? | have a female blue crab. What's the expected value of
body depth?



